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1. INTRODUCTION

Computer simulation, an extremely useful and popular technique in ?;f;

operations research and management science, is often used to study the ;}if

. behavior of very complex real-world systems. Unfortunately, simulation :jr;
models of complex systems tend to be extremely complicated themselves ;féi

‘ because of the meticulous detail ordinarily included in such models. Fur- Eﬁfi
thermore, computer codes corresponding to these models are usually extraor- :?'f

dinarily large and very long-running.

Often, simulation users cannot readily assimilate the information
contained in large, complex codes because they are overwhelmed by the
vast number of factors (i.e., input variables) and are confused about how
to make an effective analysis of the model without having to perform an
excessive number of costly and time-consuming simulation runs. If the
users could identify the most important factors in some reasonable way,
they could make the model more manageable and their analysis more efficient
by concentrating the major experimental effort on the key factors.

Factor screening methods are statistical methods that attempt to ident-

ify the more important variables. (See, for example, [4], [6]), and [8].)

A basic function of these methods is to sort all the factors into two pri-

v mary groups. One group consists of the “important" factors which are judged
worthwhile to investigate further, while the other consists of the remaining
"unimportant"” factors.

When selecting an appropriate factor screening method, one must pri-

marily consider the number of runs available for screening. In the simu-

Jation environment, the number of factors to be screened almost always ex-

-1-
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ceeds the available number of simulation runs. In statistical experimental
design terminology, this is known as a supersaturated situation. Such a
situation is common in the simulation framework because of the large number

of factors usually under consideration and because of the time and cost of

4
L B

. the computer runs. 4
Although many strategies have been suggested for designing and con- :i;

ducting screening experiments, few are applicable to the supersaturated case. 3

L &

Furthermore, for those few that are, there has been no systematic evaluation . 4

and comparison of their performance. In this paper we provide quantitative
information on a supersaturated screening strategy based on random balance i}h
sampling ([1]), (14, [12). In addition, we compare this strategy with a - g
modified strategy based on a combination of random balance and Plackett-

Burman designs [9].
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2. PRELIMINARY DISCUSSION

To provide a common statistical basis to compare and assess screen-
ing strategies, we must make some assumptions as to the general structure
of a simulation model. For detecting the factors having major effects it

is usually reasonable to assume

K
yi.80+jflﬁjxijfei . (2.1)

where yi is the value of the response (i.e., output variable) in the 1.1:h

simulation run; K is the total number of factors to be screened, each of

wvhich is at two levels (tl1); xij =+] depending on the level of the ;]gl
factor during the 1 simulation run; 8 5

4 are independent and normally distributed

is the (linear) effect of the ;jg

factor; and the error terms €
random disturbances with zero mean and variance 02.

In essence, model (2.1) is a first-order Taylor series approximation
to an actual relationship between output and input variables; ordinarily
we would use this approximation over a relatively small region of the factor

space. We will restrict performance evaluation to this model.

Random Balance Sampling

An experiment involving random balance sampling is based on an experi-
mental design that is random. In a two-level (tl) random balance design,
each column of the design matrix consists of N/2 +1's and N/2 -1's where N
(an even number) denotes the total number of runs to be made. The +1's and
-1's in each column are assigned randomly, making all possible combinations

of N/2 +1's and N/2 -1's (there are C:IZ in all) equally likely, with each
3=
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column receiving an independent randomization.

The principal advantage of random balance (RB) sampling for use in
screening is its flexibility. We can select N independently of K; there
is no mathematical restriction or relationship between N and K as there

. is in more traditional experimental designs. A second advantage is the
ease with which we can prepare RB designs for any N and K, an important
consideration when K is large.

There are two corresponding disadvantages to RB sampling. The first
of these is that factors are confounded to a random degree. Thus, we can-
not generally control the amount of confounding or interdependence between
factors. Secondly, there is no specialized or unique technique for analyz-
ing RB designs. The simplest approach is to consider each factor separately
and apply a standard F-test. We should mention, however, that practically
any technique used to analyze data without RB properties can be used to
analyze any (sufficiently small) subset of factors in an RB design. This
is done by simply ignoring any factor not included in the particular set of
factors being analyzed,

In this paper, we consider a standard PF-test applied separately to each
factor as the method of analysis for random balance data. Furthermore, for

simplicity, we conduct each F-test at the same level of significance a An

1.
RB strategy, therefore, is completely determined once we specify N andtxl.
Accordingly, we denote such a strategy by RB(N,al). Moreover, we classify

a factor as important only if it has a significant F-ratio.

Modified Strategy

We now consider a two-stage screening strategy having an RB(N.al)
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first-gstage followed by the use of a second-stage Plackett-Burman (PB)

B SN

design. We include a given factor in the second-stage PB experiment only
if it has a significant F-ratio in the first-stage RB experiment. In
this combination strategy, we declare important those factors which reach ;E;
. and have a significant effect in the second stage. 3}
Because PB designs are orthogonal, the second stage separates any ;%
’ confounding between factors carried over from the RB first stage., Factors Z;G
not formally included in the second-stage experiment are "held at a :j
constant level so not to bias any of the second-stage estimates. Further, iﬁ

unlike RB designs, we can analyze PB designs by the usual analysis of vari-

ance procedures for factorial experiments. We denote this combination

strategy by RP(N.al,az) where o, is the significance level used in all

2 ,
second-stage F-tests. ]
"B
The total number of runs R required by an RP strategy will therefore =1

be N+M where M denotes the number of second-stage runs. Although we can

specify N, the number of second-stage runs M will depend on the number of i
factors S carried over from the first stage. For reasons of economy and !'1
to avoid design saturation (i.e., no degrees of freedom to estimate experi- ¥
mental error), we employ the smallest PB design that guarantees at least .;

o one error degree of freedom. Since PB designs are only available for num- ~—

bers of runs that are multiples of four, we can obtain a minimum of one and

-

, 8 maximum of four error degrees of freedom by following this convention. }
: Accordingly, we can write M mathematically as M= B(S+l) where !-1
b B(x) = x+4-x(mod 4), Thus, R=N+M=N+B(S+l). We should emphasize, however, %
that R is random (since M is). Hence, in an RP(N.al.a.z) strategy we do not 1
5 know prior to experimentation the exact number of runs that will be required. :-
E This, of course, is a disadvantage of the RP strategy. However, noting that |
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B(x) » x+2.5 we can approximate E(R) by
E(R) = N+E(S)+3.5 . (2.2)

Since |B(x) - (x+2.5)| <1.5, the approximation in (2.2) can differ from
E(R) by at most 1.5 runs. In Section 3 we will show how the quantities

N,al. and a, affect the performance of the RB and RP screening strategies.

P A VP T R SR - I AT e P P T LI P S WPy W) S

’\r‘.'q s
v L.
P

Al

Folr st
’

; ﬂ. , ﬁ."ﬂ"."lr'_l
sacabidacesetad Laos

T
A

e

!
A Al d sl b

e s T
A VLA Lt
Lol ot il gt

o ey
.. SR
Al -

o d

RN SN I SN

-
d




-~ T - ~ -—
L S —— P R N T, AR TR T A T T Ty el R A St i St AN M I AR TR M O M ‘l

3. PERFORMANCE ASSESSMENT

In general, the objectives of a factor screening strategy are (1) :;E

to detect as many important factors as possible, (2) to declare important 'i?

. as few unimportant factors as possible, and (3) to perform as few runs as :rﬁ
possible. In short, one must consider both how many runs a strategy re- .;?

quires and how accurately it classifies factors. It is difficult, however, ;?;

v

to dichotomize factors as either important or unimportant. From a practical i

standpoint, the importance (or unimportance) of a factor will depend on the

magnitude of its effect relative to that of experimental error, o, and that
of the magnitudes of other effects present. Importance, therefore, is es-
sentially a matter of degree. The greater (lesser) the degree of importance,

the larger should be the probability of classifying the factor as important

(unimportant). f?
In this section we provide formulas that summarize the performance of
; the RB(N.al) and RP(N,al.az) strategies in terms of the number (or expected ié‘
i number) of runs a strategy requires and in terms of a strategy's sensitivity i:}
; (i.e., power) for declaring a factor important. In order to compare stra- ‘
3 tegies, we should note that tradeoffs will need to be made. Indeed, ob-
: jectives (1) and (2), which deal with factor classificatiom, conflict with :z1
- objective (3), which deals with testing cost. In many ways the screening lfﬁ
problem is like the testing of a statistical hypothesis in which we want f!i
Y the sample size to be small but the power (i.e., the probability of reject- :;~
E ing a falge null hypothesis) to be large. Our intent is to provide the sim- i
‘ ulation user with quan‘itative ir Sormation on the tradeoffs involved.

clared important by an RB(N,al) strategy, and we define R, =1 if the jsh

.

d.!

{ To establish some not ti.. , we define le-l if the jsh factor is de- ff1
=

23 i

1

v
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factor is declared important by an RP(N,al,az) strategy; otherwise, we let

Rn-o and R, .=0. Except in the simplest cases, P(R =]) are too

23 13 3

complex to be evaluated analytically, In lieu of exact solutions, we develop

=]1) and P(R2

approximations to these probabilities. In addition, we present an approxima-
tion to the expected value of R, the total number of runs required by an

RP(N,al.az) strategy. The total number of runs required by an RB(N.al) stra-

tegy is, of course, N runs.

The RB Strategy

We can write model (2.1) in matrix terms as y=B,1 + X8 + ¢ where 1
is an N x 1 vector of +1's, Yy 18 an N x 1 vector of responses, € is an N
x 1 vector of error terms, B is a K x 1 vector of factor effects, and X is
an N x K design matrix. In a random balance experiment 33[51.52.....5K] is

a stochastic matrix whose _1-':-E column, x,, 18 an N x 1 vector consisting of

x
—j
a random arrangement of N/2 +1's and N/2 -1's, By construction, the K

column vectors of X are independent. We assume that X and € are independent.

The simple least squares estimator of B, (j>1) is given by

J
=(y, -y .)/2 3.1
where ;;j(;;j) is the average value of the response over the N/2 runs at
the +1 (~1) level of the jth factor. (By simple least squares we mean that

each Bj is estimated igoring all other factors.) In matrix terms

~

K
- (x,'y)/N=[(E Bx.

L}
8y = (x, @ ERALE N (3.2)
IS K
= ! ' .
Thus, E(Bj) (llll)liflﬁili(}.:l 51)+E(§d el, (3.3)

-8-
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and V(@) = /) [ 28, Vi, 'x) + V(') (3.4)

where in (3.4) we make use of the fact that 51'5_,_:51 '9_:_1.51 '}_2.....55_1_1(
are mutually independent for fixed j.
It is clear that the exact sampling distribution of B j is intractable.

However, using results we derive in the Appendix, we can easily show

E(Bj) -BJ, (3.5)
V@) = - 8D /- 1) +0*m, (3.6)
and cOV(Bi.ej) = BiBj/(N -1) (3.7)
K
where 12-283‘ . The simple least squares estimator defined in (3.1) is
m=1

therefore an unbiased estimator of 8 5 although its variance can be seriously

inflated. Moreover, the correlation between § " and ﬁ ' is roughly
2_ 2.2 .2
where ¢m T +0 -Bm .

The correlation in (3.8) is a measure of the confounding between E N
and § j° We make the somewhat surprising observation that an increase in N does
not decrease the confounding in an RB design where simple least squares is
used as the estimation method. Furthermore, the degree of confounding between
a i and a 5 is dependent upono and the magnitudes of the other effects in the
model.

Regarding formal significance testing, we note that a single-factor
F-test to test whether E 5 is significantly different from zero is equiva~
lent to a simple two-sample t-test between the high (+1) and the low (-1)

levels of the jt—h- factor. The associated test statistic t J is given by

-9-

&L e

R




LSS ChiPd u I R ey

e on rus s SIS o o e ar sty SEED AR

-8 ~-2)1"®
‘3 Bj/[SSEj/N(N 2)] (3.9)

where SSE 4 is the familiar analysis of variance notation for the error sum

of squares of factor j. Computationally,

SSE, = §<yi-Fﬂ)2+ E(yi-;_j)z (3.10)
where the first (second) summation is taken over the N/2 observations at the
high (low) level of the :lﬂ factor., An alternative, more direct computational
formula is given by

N 2

sse, -12: -Nai-Ny . (3.11)
where ; is the overall mean of the N responses.

Following normal theory we reject Hozej =0 in favor of lesj ¥0 if the
observed value of |t jl equals or exceeds t(N-2; a1/2), the upper 100(1-a1/2)
percentage point of "Student's" t-distribution having (N - 2) degrees of free-
dom. Assuming that normal theory is adequate, we can approximate the distri-

bution of t 5 with a noncentral t-distribution having (N-2) degrees of free-

dom and noncentrality parameter

e
61j N %Nj . (3.12)
Therefore,
vhere ¥y (8) =P{|Ty_,(8)| >t(N-2;a,/2)}

and TY( §) denotes a random variable having a noncentral t-distribution with

Y degrees of freedom and noncentrality parameter §.

-10-
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The RP Strategy ]
v
To evaluate 1’(R2 J =1) in an RP(N.al.az) strategy, we observe first that
P(R,, =1) =P(R,, =1) P(R,, =1|R,, =1) 3.14 »
. "o
and note that S= Zle, where as defined previously S denotes the number of e
=1 .
factors carried over from the RB(N.al) first stage. to the PB second stage. =
Next, we define Sj -s-le and write .—3
I A-J
K N
P(R .=1|R - - mg~]1|R, .= e
®,, 1 TRty sil;(RZJ 1, 8, =s | 14~
K -
- S,=s-1|R, =1) P(R,, =1|S,=8~1, R =1 y
83( j 8 | lj ) (zj | j 8 1 4 lj ) 'q.‘
K E
-gii(sj-S-IIRU-DP(R“-”S-S' Ru-l) . 2]
(3.15) g
Using well-known testing properties of PB designs,
P(sz -lls-ﬂg le .1) -Wz(s.ﬁzj) » (3.16)
where ¥, (8,8) -P{ITd(') (8) | >t(d(s); a2/2)} R (3.17)
S 5y Bs+1)¥ B, /0 (3.18)
g
5 and d(s) =B(s+1)-(s+1) . (3.19) =
The conditional probability in (3.16) represents the probability that the :]m 1
g factor tests significant from zero in the PB second stage given that it and .
1 .
- 8 - 1 other factors test significant from zero in the RB(N.al) first stage. "-'
The quantity d(s) represents the number of error degrees of freedom in a PB
design for the study of s factors in B(s+1) rums. .
1
- Summarizing up to this point, we have B
=11~
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) P(S '°'1|R1;|'1) . (3.20)

K

To complete our evaluation of P(l?.2 j = 1), we must somehow approximate the con-

ditional distribution of S f given R. . =1 and substitute into equation (3.20).

13

This, however, is a difficult task; the conditional distribution of § f

14 =] is extremely complex. Nevertheless, the conditional distribution of

given
R
s.‘l given Rl 3 =] might be reasonably approximated, for moderately sized N, as
the convolution of (K-1) independent Bernoulli random variables having suc-

cess probabilities {wl ( 61n? m=l,2,,,0o3~-1,jJ+1,...,K}. Alternatively, fol-

lowing Feller (3], for large N and moderate values of K
A, = Zw (6 ) s
3 m‘jl 1n
we might reasonably approximate the conditional distribution of S, given

3

Rl J =] with a Poisson distribution having mean A The Poisson approximation

j.
approach is generally much easier to apply than the Bernoulli convolution ap-
proach, particularly 1if K is large.

Regarding the expected number of runs required by an RP(N oy ,0.2) stra-

tegy, we observe that

K K
E(S)= I E(R,,) = Zy,(6,,) . (3.21)
y=1 13 J_11 13

Whereupon, introducing (3.21) into (2.2), we obtain

K
E(R) ~ N+3,5+ ZWI(G

- lj) . (3.22)

Monte Carlo Results

As a check on the various approximations presented in this section, we
conducted two Monte Carlo case studies, the results of which are summarized

=12=-

e l;.)‘._

i SO e W

Aiadonndh,
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in Tables 1 and 2., As can be seen from these tables, the results are ex-

I tremely encourc_.ng and suggest that the approximations of P(le-l),

e

P(sz =1), and E(R) given in (3.13), (3.20), and (3.22), respectively, are

quite reasonable for practical purposes. It is the authors' experience [5]

' i that even for relatively small values of N these approximations are fairly
: reasonable.

As can be noted from Table 1, the approximations to P(sz'-l) based :
i on the Bernoulli convolution and Poisson distribution approaches yield o

essentially the same results. Because of this agreement and the complexity
of the calculations associated with the Bernoulli convolution approach for ;A
the second case study, we used only the Poisson distribution approach in '1
the second example to evaluate P(szt-l) « In this case, nonzero factor

effects vary in magnitude, ranging between o and 60 in absolute magnitude,

Moreover, as might be expected in an actual screening situation, the majority ﬁﬁ

of the effects are relatively small. -fq

TR P
e o
.
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4, PRACTICAL IMPLICATIONS AND CONSIDERATIONS

R s I

In this section we discuss a number of practical considerations and

PR A
t)

iy A
N 2 A ]

implications regarding the RB and RP screening strategies. In additionm,
. using a hypothetical situation, we illustrate numerically a direct appli~
cation of the results of Section 3.
We note, first, that an increase in N or o, increases the power of an

1
RB(N.al) strategy. Of course, an increase in N also increases experimental

costs by requiring more screening runs, and an increase in oy increases
correspondingly the probability of declaring important a negligible factor.
We should further point out that applying an F-test separately to each -1
factor is not necessarily the most powerful method of analyzing data from
a random balance experiment. Presumably, more sophisticated statistical
techniques (such as least squares stepwise or stagewise methods) that an-~ =1
alyze more than one factor at a time would provide greater power. However,
in some applications such methods may not be computationally feasible, par~

ticularly if K is exceedingly large, and can be severely limited if N is jj

very small relative to K. The individual F-test approach is generally a

Yy
-

relatively quick and easy testing procedure. Moreover, the use of

o

this approach admits to a tractable quantitative assessment, whereas

H

more sophisticated analytical techniques lead to an intractable problem.

In any event, we suspect that the results of Section 3 can be regarded as

GE———

a lower bound for the discriminatory power of alternative, more sophisti-

| @

K

cated RB analysis and testing procedures.

To increase the power of an RP(N.al.az) strategy, adjustments can be

made in the RB(N.al) first stage, the PB second stage, or both. Although

o

MRS B Ot

an increase in oy does not affect the number of runs in an RB(N.ul) strategy,
-l4=

J s
] e

.
l" N
s




this is not true for an RP(N,al.az) strategy. In this case, an increase

. 4111 | "'. '-',

in ay will usually increase the number of second-stage runs and hence the

total number of runs.

To increase the power of a PB experiment, one can employ 2 larger PB

Tl e
PP

design or a larger level of significance o, in the analysis. The power of .

the second-stage analysis might also be increased if some factor effects

could be reasonably assumed to be negligible based on an examination of the data.
In such cases, one could pool the sum of squares associated with these factors
into the error sum of squares, thus obtaining a pooled error estimate having
more degrees of freedom for error than the unpooled estimate. If the pooled
effects are indeed negligible, the increased error degrees of freedom will
translate into greater power., Pooling 1is especially appealing when there
is only one degree of freedom for error. Caution, however, should be exer-

cised since pooling tends to diminish the denominator expected mean square

of the F-ratio.

To help determine which effects, if any, one might reasonably combine

into a pooled error estimate, estimated effects can be plotted on normal

probability paper. In this technique (e.g., Daniel [2]), negligible effects

vl .
Y TR )

should fall approximately along a straight line, while large effects should

..

tend to fall far from the line. Because the interpretation of the results

B

relies heavily on subjective judgement, a quantitative assessment of the
merits of normal plotting is not possible, however.

[
In Section 2 we noted one advantage of an RB strategy compared with =

RNCAEN (% SR OLEEEMI (R R TN

an RP strategy. This was that for an RB strategy, unlike for an RP strategy, i@

INONCR I
a tasTaelle,

the number of required screening runs is fixed rather than random, Other

‘l-

than making this simple observation it is difficult to make any further

el

general statements or recommendations regarding the usage of these two
~]15=
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strategies relative to each other without further study. Toward this end, ‘
we have conducted a study of this problem under some simplified assumptions. "3
We wish to consider the case in which of the K factors to be screened
'k have the same absolute effect, say A>0, and the remaining K-k are inactive,
. that is, have a zero effect, In this case, we can identify three basic I';
measures of performance: c, a, and ), where we define
c = (total expected number of screening runs)/K , (4.1)
a=P { declare important an inactive factor} ’ (4.2) !-1
and V=P {declare :l.nﬁortant an active factor} . (4.3) ‘
By active, we mean one of the k factors haw-r:lng an absolute effect equal A.
For future reference, we define p = k/K. 'j
It iﬁ clear that for an RB(N.al) strategy c-N/K,a-al. and y can be . a
determined from (3.13). For an RP(N,al.az) strategy c-E(R)/K.a-alaz. J
and Y and E(R) canbe determined from (3.20) and (3.22), respectively. We :1
note that specifying c and o determines uniquely the corresponding RB stra- ~
tegy, namely, RB(cK,a) where cK is assumed to be an even integer. With 1
; this in mind, we developed a computer search routine which for any given ?1
RB(ck,a) strategy attempts to find an RP strategy having the same c and 1
os but greater power. :
: Using our search routine we examined the following twelve cases: !—1
E - K =100, 200, 500; p=.05, .15; and A/o=2, 8, Furthermore, to maintain ’ w
;p a supersaturated situation, we considered .1 <c<.9 . . ,
E Figure 1 presents graphically the results of the investigation. Each :
» curve in this figure represents one of the six combinations of K and p
L studied. For points (c,a) above each curve, no ltl’(N.a1 .uz) strategy could .JI
b
- improve on the performance of the corresponding RB(cK,a) strategy. For
b points (c,a) below each curve, there exists some M(N.al.az) strategy that :
E -16~ }
3 L
| B
L e L e e LU e i




L2 g 4 g g g i S Sl g i Jaglh e Sat” SbeStel i Sabeciies T wy Jiwes S S b gl iCRR i e It Rt i) i CanR S At S S G

outperforms the corresponding RB(cK,a) strategy. Each curve defines the
boundaries of what we refer to as "zones of inadmissibility.” As can be
seen from Figure 1, the a level defining each boundary curve increases as
sample size increases.

Furthermore, for the cases examined, we found that r=A/c had virtually
no effect on the results. We can offer two reasons for this. First, in an

RB experiment vhere all nonzero effects are of equal absolute magnitude, the

« e

noncentrality parameter, 61. associated with these factors is given by

»

612 «aN/(k-1+ r-z) » per (3.12)., If r is large relative to (k- 1)4’. then

612' N/(k-1). Second, in a PB experiment the noncentrality parameter as-

A.‘“‘-“A YW T BTy

sociated with factors of equal absolute effects is given by 62 -u"r vhere
M is the number of runs made, see (3.18). For the cases we considered, M

is generally large emough that vhether r=2 or r=8 makes little difference

O N TN

in any resulting power calculation. 1

In sum, the results indicate that neither strategy dominates the other. ;~;’;j'

Moreover, the findings suggest that sn RP strategy should be considered in

those situations vhere it is important that a be maintained at a low level. -' :

Finally, to illustrate a direct application of the results of Section 3,

consider a simulation model consisting of K =200 factors and suppose we are 1

. interested in employing an ll(ll.al) screening strategy. The parameters N ...;
and a, are at our disposal, of course. Suppose further that we anticipate
the average absolute effect to be roughly 0.50 with a standard deviation of 1
¢ 1.50 . Ve imagine that the absolute magnitudes of the effects have a rela- .‘.,1

tive frequency distribution similar to that illustrated in Figure 2.

th absolute

It is convenient to define ' Iﬁjllo. the ratio of the j
effect to 0. In terms of the Yj we can write the square of the noncentrality

parameter associated with the jth effect, see (3.12), as
17~
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2 2,05y 2
8,4 = W /(Z vy, +1=-v) . (4.4) -
13 3 gyt 3
'
From our above assumptions, 2y1/zoo- 5 and Z(Yi- .5)2/200- (1.5)2. from ;-_‘j_j
vhich it follows that Iy =200(2.25+.5%) =500. Therefore, -
2 2 2
- = . 4.5 '
814 =Ny / (501 =) (4.5) ;

Of course the larger is 61§ » the greater is the power of the testing pro-
cedure, see (3.13). Further, it is clear that if |81|§|_Bj|'. then

2
614

< 61§. .

To make any power calculations, we need to specify a value or values of
Y i For the sake of illustration, suppose we wish to consider the power for
an effect of magnitude 30, that is, consider a y 3 = 3, Accordingly, introduc-
ing y 3 =3 into (4.5), we have 61§-9N/492 o Therefore, for a given N and aye
we can compute the power.

Table 3 presents the power corresponding to an effect of magnitude 30
for a number of RB(N,al) strategies. (From a previous remark, we know that ".';‘-]
power will be greater for any effect greater than 30 in absolute magnitude.)
We can use Table 3 for guidance in using and selecting a suitable RB(N.al) —
strategy. For example, if we decide to control a, at .15 and desire our power
to be at least 0.50 for effects greater than or equal 30 in absolute magnitude,
then N, by interpolation, must be at least 118 runs. If an N this size is not
feasible, then additional tradeoffs must be made or we should investigate the
use of an alternative screening plan.

The use of an ”(N.Ql .uz) strategy could be investigated ina similar
sanner, again utilizing the results of Section 3. Here, of course, the ef-

fect of three psramsters, not two, would have to be considered.

e
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5. SUMMARY AND DISCUSSION

0 B

In this paper we have focused on the problem of factor screening (i.e., f;

the identification of the important Qariables) in computer simylation, Spe- iﬁ

. cifically, we have discussed and evaluated two factor screening strategies, !1
both of which are based on random balance sampling. These two strategies _i

are intended for use in supersaturated situations, that is, where the ?a

number of variables to be screened exceeds the number of runs available. :?

This type of situation frequently exists in the simulation emvironment, par- :;

ticularly in the study of large, complex models. éiﬁ

Generally, in any screening application we must consider both the ac- ??

curacy of factor identification and the number of runs required by the stra-
tegy we employ. For the two strategies we have considered, we have developed
approximations to (1) the probability that a given factor is declared im-
portant and (2) the total number (or expected number) of required runs.

These approximations compared very favorably with corresponding Monte Carlo o
v
3

quantitative information on the tradeoffs involved in particular screening kD

estimates. More importantly, the approximations provide the user with

applications. Accordingly, the results of this paper can be used as a

b AP AL A
.. ERRNENEA
Sy
} PR

practical guide in making objective decisions about the use of the two stra-

L 4

tegies we have studied.

PP
Cela s
Lt A
PN

Although other supersaturated screening strategies, such as group screen-

Fawl

.

B LM

ing ([7], [11])), have been suggested, there has been little or no systematic
evaluation of the performance of these methods., It remains to be seen, there-

fore, how the performance of these methods compare with the performance of the

e 2l
R
PRS-

two strategies examined here.
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1f H is a discrete random varisble having probability distribution

P(E=h) = (:)7(2:) he=0, 1, 2, ¢ees T (A.1)
0

otherwise,
where r is any positive integer, we write H~H(r). The class of distri-
butions defined in (A.l) is a symmetric subfamily of the hypergeometric
family of distributions. If H~H(r), then E(H) =r/2 and V() = (r/2)%/(2r-1).

We define £, = (x, +1)/2 where x, 1s the i~ column vector of an RB de

sign matrix and note that, for i¢j, £, ~H(N/2). It follows that, for

H'4
i3, (_x_j'gi-l-ll)/b"ll(ulz) . Hence, for 143, B(x '51)-0 and

Ve, 'z,) - N/N-1).

In regard to the distribution of ‘e|x,~

% 5 =5
55'53-11. Because the conditional distribution of 51'5_
given 51 is the same for any realization of -‘-j’ the result is therefore

true unconditionally. Thus, !(3:_j 'c) =0 and V(gj 'e) = NoZ.

'€, we observe that

R(O.llaz) since

To find the covariance between 31 and Bj. for 143§, we have

cov(B,,B,) ~£(B,8)-8.8, . (A.2)
We write uB_- Yot A, vhere ) = 3.'5 and v .q gg x'-!_t_q . Thus,
WEBB) = Elvyr,) 4B M) #E(YA) +EON. .3
It is easy to show that !(yixj) -B(iji) -E(Aixj) =0, so that
coviB B = BCv v )N - 8.8, (A.4)

20~

B alal

',"’
et alalaldd

e

Je



F:‘.-‘-w.v----.-v-v;..<.A----rr....v oy o T v
3
X
g
L
‘ Expanding B(yiyj). we have
X K '
L .9
‘(Yﬂj) L1 q£1 Bqu E(x, XX gq) . (A.S) E
It is not difficult to verify that, for 1¢4, B(_i'x xj 'x ) is zero unless I"'
L r-i. q~j or r=j, q=i, When r=i and gq=j, B(;i —r—j" )= E[(_isi) ]-Nz
vhen r=] and qe1, B(x,'x x,"x ) = V(x,'x,) -W2/(N-1) .
PS ‘a
: Substitution into (A.5) yields f:.f
: E(v,Y,) = N8B,/ (¥-1). .6) g
Finally, introducing (A.6) into (A.4), we get the desired result
L.: ,'.]
- v
cov(B.B,) =88,/ (8-1) . (.7
]
‘
—
'. B
=
.' |
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